Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Microbiol ; 13: 1093080, 2022.
Article in English | MEDLINE | ID: covidwho-2237148

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus type II (SARS-CoV-2) variants have led to a decline in the protection of existing vaccines and antibodies, and there is an urgent need for a broad-spectrum vaccination strategy to reduce the pressure on the prevention and control of the pandemic. In this study, the receptor binding domain (RBD) of the SARS-CoV-2 Beta variant was successfully expressed through a glycoengineered yeast platform. To pursue a more broad-spectrum vaccination strategy, RBD-Beta and RBD-wild type were mixed at the ratio of 1:1 with Al(OH)3 and CpG double adjuvants for the immunization of BALB/c mice. This bivalent vaccine stimulated robust conjugated antibody titers and a broader spectrum of neutralizing antibody titers. These results suggested that a bivalent vaccine of RBD-Beta and RBD-wild type could be a possible broad-spectrum vaccination strategy.

2.
Vaccines (Basel) ; 10(10)2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2066615

ABSTRACT

With the emergence of more variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the immune evasion of these variants from existing vaccines, the development of broad-spectrum vaccines is urgently needed. In this study, we designed a novel SARS-CoV-2 receptor-binding domain (RBD) subunit (RBD5m) by integrating five important mutations from SARS-CoV-2 variants of concern (VOCs). The neutralization activities of antibodies induced by the RBD5m candidate vaccine are more balanced and effective for neutralizing different SARS-CoV-2 VOCs in comparison with those induced by the SARS-CoV-2 prototype strain RBD. Our results suggest that the RBD5m vaccine is a good broad-spectrum vaccine candidate able to prevent disease from several different SARS-CoV-2 VOCs.

3.
Virology ; 569: 56-63, 2022 04.
Article in English | MEDLINE | ID: covidwho-1721064

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kappa (B.1.617.1) variant represented the main variant of concern (VOC) for the epidemic in India in May 2021. We have previously established a technology platform for rapidly preparing SARS-CoV-2 receptor-binding domain (RBD) candidate vaccines based on glycoengineered Pichia pastoris. Our previous study revealed that the wild-type RBD (WT-RBD) formulated with aluminum hydroxide and CpG 2006 adjuvant effectively induces neutralizing antibodies in BALB/c mice. In the present study, a glycoengineered P. pastoris expression system was used to prepare recombinant kappa-RBD candidate vaccine. Kappa-RBD formulated with CpG and alum induced BALB/c mice to produce a potent antigen-specific antibody response and neutralizing antibody titers against pseudoviruses of SARS-CoV-2 kappa, delta, lambda, beta, and omicron variants and WT. Therefore, the recombinant kappa-RBD vaccine has sufficient potency to be a promising COVID-19 vaccine candidate.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Receptors, Opioid, kappa , SARS-CoV-2/genetics , Saccharomycetales , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Synthetic/genetics
4.
Engineering (Beijing) ; 13: 107-115, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1306953

ABSTRACT

In 2020 and 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, caused a global pandemic. Vaccines are expected to reduce the pressure of prevention and control, and have become the most effective strategy to solve the pandemic crisis. SARS-CoV-2 infects the host by binding to the cellular receptor angiotensin converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the surface spike (S) glycoprotein. In this study, a candidate vaccine based on a RBD recombinant subunit was prepared by means of a novel glycoengineered yeast Pichia pastoris expression system with characteristics of glycosylation modification similar to those of mammalian cells. The candidate vaccine effectively stimulated mice to produce high-titer anti-RBD specific antibody. Furthermore, the specific antibody titer and virus-neutralizing antibody (NAb) titer induced by the vaccine were increased significantly by the combination of the double adjuvants Al(OH)3 and CpG. Our results showed that the virus-NAb lasted for more than six months in mice. To summarize, we have obtained a SARS-CoV-2 vaccine based on the RBD of the S glycoprotein expressed in glycoengineered Pichia pastoris, which stimulates neutralizing and protective antibody responses. A technical route for fucose-free complex-type N-glycosylation modified recombinant subunit vaccine preparation has been established.

SELECTION OF CITATIONS
SEARCH DETAIL